Glaucoma-causing myocilin mutants require the Peroxisomal targeting signal-1 receptor (PTS1R) to elevate intraocular pressure.
نویسندگان
چکیده
Glaucoma is a leading cause of worldwide irreversible visual impairment and blindness and is a clinically and genetically heterogenous group of optic neuropathies. Specific mutations in the myocilin (MYOC) gene cause primary open angle glaucoma (POAG) with varying age-of-onset and degree of severity. We show a mutation-dependent, gain-of-function association between human myocilin and the peroxisomal targeting signal type 1 receptor (PTS1R). There was correlation between the glaucoma phenotype and the specific MYOC mutations, with the more severe early-onset POAG mutations having a higher degree of association with PTS1R. Expression of human myocilin glaucomatous mutations in mouse eyes causes elevated intraocular pressure, which is a major phenotype of MYOC glaucoma. This is the first demonstration of a disease resulting from mutation-induced exposure of a cryptic signaling site that causes mislocalization of mutant protein to peroxisomes and the first disease-gene-based animal model of human POAG.
منابع مشابه
Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders
Two peroxisomal targeting signals, PTS1 and PTS2, are involved in the import of proteins into the peroxisome matrix. Human patients with fatal generalized peroxisomal deficiency disorders fall into at least nine genetic complementation groups. Cells from many of these patients are deficient in the import of PTS1-containing proteins, but the causes of the protein-import defect in these patients ...
متن کاملReversal of mutant myocilin non-secretion and cell killing: implications for glaucoma.
Glaucoma is a progressive blinding disease characterized by gradual loss of vision due to optic neuropathy and retinal ganglion cell death. Increased intraocular pressure is a common feature of glaucoma that is thought to arise from an increased resistance to outflow of aqueous humor through the trabecular meshwork. Mutations of the myocilin gene are one cause of autosomal dominant juvenile- an...
متن کاملNon-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor.
Until recently, very little was known about the molecular mechanisms responsible for the development of glaucoma, a leading cause of blindness worldwide. Mutations in the glaucoma gene myocilin (MYOC, GLC1A) are associated with elevated intraocular pressure and the development of autosomal dominant juvenile glaucoma and a subset of adult-onset glaucoma. MYOC is expressed in the trabecular meshw...
متن کاملTransgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma.
PURPOSE To developed a genetic mouse model of primary open-angle glaucoma induced by expression of mutated human myocilin in transgenic mice and to test whether expression of mutated human myocilin in the eye angle structures produces more significant damage to the eye than does mutated mouse myocilin. METHODS Recombineering in Escherichia coli was used to introduce the Tyr437His point mutati...
متن کاملTargeted Disruption of the Myocilin Gene (Myoc) Suggests that Human Glaucoma-Causing Mutations Are Gain of Function.
Glaucoma is a heterogeneous eye disease and a major cause of blindness worldwide. Recently, primary open angle glaucoma (POAG)-associated mutations have been found in the trabecular meshwork inducible glucocorticoid response gene (TIGR), also known as the myocilin gene (MYOC), at the GLC1A locus on chromosome 1q21-q31. These mutations occurred in a subset of patients with juvenile- and adult-on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 16 6 شماره
صفحات -
تاریخ انتشار 2007